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The influence of internal heat sources on the effective thermophysical properties 
of disperse media is examined and relaxation equations are obtained. It is 
shown that the heat-conduction equation can be both hyperbolic and elliptic in 
type. 

An extensive literature (see [1-4], say) is devoted to nonstationary heat transfer in 
disperse systems. Substantial difficulties occur in the determination of the effective heat- 
conduction coefficients and the different thermal relaxation times in heterogeneous two- 
phase media. Heat transfer in real disperse systems is often accompanied by heat liberation 
or absorption because of endo- and exothermal chemical reactions, phase transformations, and 
a number of other processes that occur in the bulk or on the phase interfaces comprising a 
heterogeneous medium. Crystallization or solid phase dissolution in a fluid, evaporation, 
drying, or sublimation in a liquid-drop or powdery cloud, etc., may be exampies of such 
s ituat ions. 

The presence of internal heat sources is felt in the mean values of the temperature, its 
gradient and heat flux, which results in both a change in the effective thermophysical 
characteristics of the disperse medium as compared with the same medium but in the absence of 
sources, and in certain new physical effects, as is shown in [5], say, in application to 
stationary heat transfer in disperse systems with phase transformations on the surface of 
inclusions. 

The purpose of this paper is to investigate the influence of thermal sources on non- 
stationary heat transfer in heterogeneous two-phase media in the simplest example of a medium 
consisting of a continuous matrix and identical spherical inclusions. It is assumed that there 
are thermal sources on the surface of the inclusions and in the bulk of the phases, for which 
the intensity in the temperature range of interest to us can be expressed in the form of the 
linear function 

o 

Q~(T) --- L~ q- L~ T. ( 1 )  

Here L~, L'll can have any sign. For instance, the cases L?i, L'11 < 0 and L~, L. 11 > 0 correspond 

to endo- and exothermal reactions respectively, and L. l < 0 < L? to heat liberation or 
' I i 

absorption during phase transformations, etc. 

The investigation is performed on the basis of methods of taking the average over an en- 
semble of allowable inclusion configurations in combination with self-consistent field theory 
methods, whose brief exposition can be found in [6, 7], say. For simplicity in the calculations, 
the case of moderate concentrations is examined (we neglect the requirement of nonoverlappa- 
bility of the inclusions). It is assumed that the size of the inclusions is much less than 
all the characteristic linear scales of the macroproblem which, in principle, permits appli- 
cation of continual methods. 

In conformity with the theory of taking the average over an ensemble of inclusion con- 
figurations [6, 7], the macroscopic heat conduction equation can be written in the form 

0t (r) c - -  = - -  v q  (R) .+ Q, Q - h + rn t  (R), q (R) - - -  ~W: (R), ( 2 )  
dt 
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where the following formal relationships hold 

)wt (r) = ~ovt (r) + (A -- Zo) n J' v t*  (r, r ' )  dr ' ,  
IR--R'I~<a 

Q~/7" ,f 
l r - r ' l = a  

[L~ + L~ t* (R, R')I d r '  + L; + p (L~ . -  L;) + L~t (R) 

+ (LI -- Lo ~) n .I t* (r, r ' )  dr ' ,  
(3) 

_ _  ot (R) [ Or* (R, R') dR', Ot ( r )  _ co + (c~ - co) n 
ot ~ Ir_~r. k<. ot 

Or* (R, r')  
vt* (r, r ' )  

OR 

Here ~*(R, R') is the temperature at the point R under the condition that the center of an 
isolated (trial) particle is at the point R' and IR - R' I ! a. 

In the general case, the quantities X, c, andm, with the meaning of an effective heat 
conductivity, specific heat, and thermal source density, are certain operators and the 
temperature-independent part of the source density h ~s a function of the time. In the case 
of steady nonstationary processes, when initial conditions are not essential in the solution 
of the macroproblem, it is convenient to apply generalized Fourier transformations in time 
to (2) and (3), after Which these relationships acquire the form 

c,jo% (R) = - -  V% (R) + h~ + m~% (R), q~ (R) = - -  ;~V% (r), 

~V% (r) = Z0V% (R) + (;q ~,o) n ~ t* -- v ,o (r, r')  dr',  
IR--R' I~a 

; o 
r 1 t* t~  R')] dR' + (Lxp + h~ + m~t~ (R) = n [LOs/io~ + ~ ,o ~ . , ,  

IR--R" l=a 

+ L o ( 1  --p))/ico + L~ %(R) + (LI + L ~ )  n ( t~(R, R') dR', 

c~t~ (r) = Co~ (r) = ( c ~ -  Co) n ~ ~* (R, r')  dr',  i = V-----i. 
I R'--RI~<a 

(4) 

(5) 

The Fourier transforms of the appropriate operators and functions are marked with the 
subscript ~ in (4) and (5). Unless so stipulated specially below, we omit the subscript 
from the quantities mentioned. 

As follows from the general method [6, 7], in order to find the quantities 7~*(R, R') 
and ~*(R, R') it is necessary to solve an auxiliary problem about the perturbations induced 
by the trial particles in the mean temperature field. The mathematical formulation of this 
problem has the form 

At+ (R' § r) - -  =~t+ (R' § r) + [ -- O, r > / a ,  At* (R' § r) -F p~t* ( r '  -6 r) + 

+ ~ == O, r ~ a, ~+ (R' + r) = ~* (R' + r), n~.vt+ (R' + r) + L ~ / i o  + 

+ L~ t+ (R' + r) ~- n;~lVt* (R' + r), r = a, ~* (R')  =/= 0% b~ = L~/io~;~l, 

~ =(c ico  - -  m)t~,  

[ - hi;% ~ = (LI  - -  ir ~* (R' + r) - -  ~* (R, R'), r = R - -  R'. (6) 

Here ~+(R' + r) has the meaning of a mean temperature at the point R' + r under the condi- 
tion that the center of a trial particle is at the point R'. 
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.Wg_sglye the prqblgm (6) under thg. additional assumption [as  >> i, where ~ is the 
characteristic dimension of a disperse system. In this case the influence of the system 
boundary on the temperature near and within the trial particle can be neglected and as 
follows from [6, 7], the solution of (6) can be written in the form 

z + ( R ' + r ) = T ( R ' + r ) + ~ ( R ' + r ) ,  ) ( R ' + r ) - ~ 0 ,  t - + o  o,  

where ~(R' + r) is the perturbation induced by the trial particle in the mean temperature 
field. Consequently, (6) agrees formally with the problem of finding the temperature inside 
and outside a single particle placed in an infinite medium with the heat conductivity 
X, the thermal source densityh + m~+(R ' + r), the specific heat c, and a certain temperature 
profile ~(R' + r) at an infinite distance from this particle. 

If I~[ ~ [~[, then it is convenient to solve (6) analogously to how it is done in [4], 
by expanding the mean temperature ~(R + r) near an arbitrary point R in scales of the order 
a in a Taylor series in the small parameter ~ m a[~ I. It is here essential to use the 
assumption that the characteristic scale of the change in x(R) is much greater than a. 

Expanding ~(R' + r) near the point R' and introducing a spherical coordinate system with 
center at the point R', we find 7~*(R, R') and ~*(R, R') in the form of series of spherical 
harmonics (see [4] for more detail about the solution of an analogous problem). The 
solutions obtained depend here on V~(R') and ~(R') as parameters. Expressing V~(R') and 
r(R') in terms of 7~(R) and r(R) by using Taylor series expansions, substituting the results 
obtained into (5), and integrating, we arrive at a system of transcendental equations in 
the unknowns X, c, and m and at equation to determine h. Omitting the intermediate calcula- 
tions because of their awkwardness, we present the values of the desired quantities ~, 
c~, n~, and hm, obtained in expanding I(R + r) to ~ accuracy. Specific calculations were 
performed for the case L~ ~ LI z* (i.e., situations were considered when processes of the 
type of phase transitions of the first kind, magnetic reversal, depolarization, etc. occur 
in the bulks of the inclusions): 

~ = k ~ + pk  ~ q- i~ ~ + (i~• - -p )~ l~  k' ,  • = c~ ~ % = c ~ + pc~ + i~c ~ 

mo = m ~ -k p a p  + i~m ~, ~~176176  ), c~ (1 --- p)@~p,, 

m ~  p ~ a  ~, p = ( L ~ ( 1 - - p ) +  L I p +  oLs /a )  a , ,  ~; = 

. . . . . . . . . .  B q - 3 G ~ ( ~ / ~  + 2 ) ~ + A  S, k.'~= ( x A - - •  S,  

)~~ § 2)~ ~ 2 Xo 
~, _ 3 x ~  s = ( x ~ - -  ~~ A --, 

2 X1+2)~ ~  t ako -b2  k~ ' 3 2~1--k3 h~ 

1 ~o 1 k, ~ (3)~  -q- 21,, ~ 1 
B = ~ - -  q '  ~ , P l =  Lla~/~,x, 

5 ~,,~ + 2~. ~  30 (~.~ + 2~o) ~ 15 

• = c:a~/%:, q~ L: = ~ apo~, ( 7 )  

mp := 9 - -  q~ ~,1 -~ 2k~ P 
C 

3 2kl -k- 5.k ~ U' P1 2)~1 + )~~ "~~ 
§  10 ~ - k 2 ~  ~ ~.T § p 6 ~  j _  a ~ 

[ ( E  ~ • I . , -k5E~ ) _ 3 •  k, 3Y 
m o = p  -- 3q~ __Z_ -+ 3 ~.~ _}_ 2~ o ' ~--w - -  ql E.d.. ~ 

- -  (q~ - -  q0) ~ q- • I--0- ~,~ q-  2)~ ~ - -  • 6;~---------;~ a "~ ' 

L ! a"/)~ ~ i =: 0, 1, cv = - -  c ~ I'p ( )--~ + (cl - -  co) 9 t 0 q~ 

c ~ = _._ cO 1~ { 2~o~ --k ~~ ~-  ( c ~ - -  co) p • ,!o , \ 6)~ ~ 

3 2th "Jr" 5E~ Pl 2E1 --~- ;L~ 

kl q._ 2; C + q ~ q -  } p 6K ~ 

3 2~ 1 + 5~ ~ 

10 k I + 2% ~ 
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h~ =.-h~ @ h~ --  L~ @ 3L~ /a) (p~-- L~p/3k~ p 
2 

- - ( L I - - L ~ )  ~ p 5 k~-t-2k~ --3q~p k _t_2L--o + 

@ ) ]  1 +L~a~p (LI L~+3 L~)(1--  P ) • 
@ to~ a Pl 6)~ ~ (io)• @ PO 

h ~ -- L; @ p (L~ - -  L~ q- 3L,p/a, Ps L~ a/k. (7 )  

The quantity X ~ is the stationary heat conductivity of the same disperse system but with 
inert components; it agrees with that obtained in [8]. The quantity XP characterizes the 
influence of the thermal sources on the stationary heat transfer in a disperse medium. The 
parameter k ~ governs the directivity and velocity of the relaxation processes in the disperse 
systems. 

Taking account of the equality q~ = -XmV~m, applying the inverse Fourier transform, and 
neglecting quantities proportional to p312 and (~K) ~]=, we obtain the relaxation equation 

q(R)=--(k~ ~ a ) V �9 (R), ( 8 ) 

or after evident transformations 

)a a ) (9) 
I k ~ at q (R) = - -  (L ~ + pk p) v ~  (R) .  

It is seen from (8) and (9) that for Xm >0 the gradient of the mean temperature relaxes 
to the equilibrium value of the heat flux, and for k m < 0 the magnitude of the flux relaxes to 
the equilibrium value of the gradient of the mean temperature. 

The third component in the expression for Am in (7) characterizes the influences of the 
thermal sources on the relaxation processes~ where the nature of this influence will be 
distinctive depending on the relationships between the quantities p and <m. Let us examine 

the situation when [p[ > [K~[ and Jp[ < [K~[. For [p[ > [KW[ we have (--p@i~• ~/2 
/ 

(I----ie 3_~. Hence, it is seen in particular that if p > 0 (i.e., processes of the exo- 
\ 2p / 

thermal reaction type are predominant in the disperse medium), then such a quasistationary 
situation is not realized physically. This result is a consequence of the condition 
J~Js >> 1 and is completely analogous to a "thermal explosion" [9]. If p < 0, then under 
evident approximations util~ing the inverse Fourier transform, we obtain 

~ ~O+pk~§ 3/2~'+ k~+TIP[ 

It is seen from (I0) that the presence of heat sources increases or decreases the 
relaxation time for X~% ' > 0 and X~X' < O, respectively. 

For [pJ < ~ we have (--p @i~)3/2 (i~• 3p/2• Limiting ourselves to the terms 

written down for the expansion, we obtain after applying the inverse Fourier transforms 

t t 

k~k~ + k' YX - f# ( ;  a t ' a ~ ~  ~t---~-7 at'~ - - T  psSat'a)~(t't')'W(t't')m(t)=m(t')~t-t, at" 
. . . .  (11) 

In this case the relaxation equation becomes nonlocal in time. The first integral in 
(ii) is analogous to that obtained in [4] for the inert phase case, and the second charac- 
terizes the influence of the thermal sources on memory processes. 

After the inverse Fourier transforms, as is easily seen from (7), the effective values 
of the specific heat c as well as the parameters m and h acquire the form 
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e c O + c P p + c  ~ 0 =- - - ,  m = r n  ~  p @ t ~ z ~ - O  , ( 1 2 )  
Ot Ol 

[ l ,  1 C )] P L1- -Lo  3 1 , 1 
h = h  ~ 1 - ~ h  ~  1 - L ~ 4 - 3 L ~ / a ) ( p s - L ~ p / 3 x ~  2 ~~ a2P ,5 ~-1~-22~ + --2-, - -3qsp  L~+2>~ ~ r 2 " 

Within the limits of the accuracy chosen, the heat-conduction equation can be obtained 
in the following form after evident transformations 

~ ~ 1 7 6  m ~ 1 + p  mO ~o �9 (r) + 

-~ P o~ %o C p- c ~ --0. (13) �9 ~ _}_m~O c o O's(R) c 
- -  -- 07 c ~ ~ o OF 

It hence follows that the heat-conduction equation can be elliptic for c~/c ~ < ~/~~ 
hyperbolic for c~/c ~ > Am/k~ and not just hyperbolic as is asserted in [2, 3], say, from 
thermodynamic or phenomenological considerations. An equation analogous to (13) has been 
obtained in [4] for the temperature, which is average just in the continuous phase, for the 
case of inert comopnents of the disperse medium. 

It is seen from (13) that the thermal sources influence the inertial properties of 
disperse media, which is characteristic for precisely heterogeneous systems. 

Let us emphasize that expressions (7)-(13) are obtained for steady nonstationary pro- 
cesses. In case when the initial conditions of the acroproblem are essential, it is pertinent 
to use the Laplace rather than the Fourier transform in (2) and (3). In particular, it 
should here be expected that terms dependent functionally on the time wouldappear in the 
expressions for h and the relaxation relationships. 

NOTATION 

a, radius of the inclusions; c, specific heat; A, heat conductivity; L~, coefficients 

introduced in (i); s dimension of the disperse medium; n and p, numerical and bulk concen- 
trations of the inclusions, respectively; n, unit vector normal to the particle surface; 
h and m, coefficients introduced in (2); T and ~, true and mean temperature; ~* and ~+, 
temperature inside and outside the trial particle; ~,perturbation induced by the trial 
particle in the mean temperature; ~, 6, P, f, parameters introduced in (6); e, a dimensionless 
parameter characterizing the ratio between the inclusion radius and the characteristic 
scale of variation of T; m, Fourier transform parameter AJ, cJ, mJ (j = 0, p, ~), ~', p, Pl, 

Ps, h~ K, KI, S, A, B, qi (i = s, 0, i) introduced in (7); W(t, t'), an operator introduced 
in (ii); t, time; ~(t), an arbitrary function of the time; Q, thermal source density; q, 
heat flux density. Superscripts: 0, i, continuous and discrete phases; s, thermal sources 
on the inclusion surface; quantities without superscripts refer to the effective homogeneous 
medium. 
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HEAT TRANSFER AND CRYODEPOSIT PROPERTIES IN 

SOLID-STATE CONDENSATION 

V. B. Lisovskii UDC 536.423.4 

An expression is derived for the effective thermal conductivity, which agrees with 
experiment. A studyis made of heat transfer in solid-state condensation, and 
working formulas are derived. 

Solid-state condensation or desublimation has not been extensively discussed in the 
literature, in contrast say to boiling. Solid-state condensation is used in some processes 
in chemical engineering and in cryogenic pumps. If the temperature of the cold surface is 
below the triple point, the vapor condenses directly to the solid state. It is familiar 
that water vapor will deposit as frost from air on cold surfaces. In all cases, the deposit 
adversely affects the heat transfer as it insulates the surface, and the removal requires 
the process or pump to be shut down. 

The growth of the solid phase is a complicated nonstationary process involving various 
heat- and mass-transfer mechanisms. It can be represented as a boundary-value problem with 
a mobile boundary, which is characterized by heat and mass transfer through the growing layer 
of solid phase. The processes within the layer are such that the boundary layer can be 
considered as quasistationary. 

The layer of solid phase is a porous body. In accordance with the conditions of forma- 
tion, it has low density and high Porosity, or conversely high density and low porosity. The 
temperature gradient in the layer produces vapor migration in condensation. Therefore, the 
density and thermal conductivity alter during the condensation. 

Solid-state condensation on cold surfaces has been examined with an apparatus containing 
a vacuum chamber, in which a thermally insulated vessel containing liquid nitrogen was placed, 
which had an open condensation surface of diameter 56 mm. Condensable vapors were admitted 
(freon 13 and acetone) through a system including an RS-3A rotameter, damping capillary, fine- 
adjustment leak, and nozzle with porous baffle providing a vapor flow uniform over the cross 
section. The heat flux was determined from the loss of liquid nitrogen by boiling. The 
temperature of the cold surface was monitored by four copper-constantan thermocouples and 
recorded by an F-30 digital voltmeter. The pressure was measured with an oil gauge read by 
means of a cathetometer, which provided a sensitivity of 0.01 mm in the range 0.1-1.5 mm Hg. 
The surface temperature and the layer thickness were determined with a mobile probe fitted with 
a micrometer screw giving a displacement accuracy of 0.01 mm. The maximum layer thickness was 
5 mm. 

The deposit was observed and photographed with an illumination system. As there are no 
standard data, we determined the following parameters of the monolithic solid in separate 
experiments: heat sublimation, density, and thermal conductivity. 

The formation of the solid phase begins with the production of thin needles growing from 
the cold surface. Then the tops of the needles, which had attained a length of 2-3 mm, began 
to produce whiskers, which were interwoven. The structure became more complicated. The 
growth of the solid continued on the outside. There were considerable effects on the structure 
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